44 research outputs found

    Fostering the Reuse of Manufacturing Resources for Resilient and Sustainable Supply Chains

    Get PDF
    In the current context characterized by turbulent market conditions and the increasing relevance of sustainability requirements, reconfigurable manufacturing systems (RMSs) offer great potentialities for supply chains and networks. While plenty of contributions have addressed RMSs from a technological and system-specific perspective since the mid-1990s, the research interest for the strategic potentialities of RMSs at the supply chain level is recent and mainly related to building supply chains’ resilience and sustainability. Despite the interest, methods to support supply chains to strategically exploit RMSs are still missing, while being highly needed. In this paper, a method—consisting of an index to assess machines reusability and a mixed integer programming (MIP) algorithm—is provided to support the identification of reusable and reconfigurable machine candidates at the early stage of the strategic network design. The overall method allows machines to be compared based on their reusability and geographical locations. The application of the method, as well as an example referring to the production of emergency devices during the COVID-19 pandemic are reported. The theoretical and practical implications of the study are also discussed, and, among others, strategic parameters related to machines have been identified and elaborated as enablers of supply chain reconfigurability; the proposed method supports practitioners in improving supply chain resilience and sustainability. The method also encourages practitioners towards the development and adoption of reconfigurable machines. Finally, this study also has social impacts for local communities and stimulates customer-centric collaboration among companies belonging to similar industries and sectors

    Core Characteristics of Reconfigurability and their Influencing Elements

    Get PDF
    The unpredictability of market requirements is more and more pushing manufacturing firms to be responsive. To this end, reconfigurability is needed. Reconfigurability is composed of six core characteristics: modularity, integrability, diagnosability, scalability, convertibility and customization. These characteristics are related with each other. This paper - exploiting the available literature - aims at identifying and analyzing elements influencing the core characteristics. As a result, characteristics, influencing elements and relationships have been located in a comprehensive framework. The novelty of this research is that the relationships between characteristics have been taken into account. For this reason, this research is considered a first step to understand how manufacturing firms can achieve reconfigurability, by fully exploiting the core characteristic

    A Literature-Based Analysis of the Cyber-Physical Systems Under the Lens of Reconfigurability

    Get PDF
    Cyber-physical systems (CPSs) are an increasingly known set of technologies and applications promising to enable manufacturing firms improving their responsiveness to deal with the unpredictability of market requirements. Indeed, from an operational perspective, responsiveness can be achieved because CPSs are an enabler of the reconfigurability of factories. Reconfigurability is a capability that has been theorized since almost two decades. Therefore, today we can consider such grounded theory as a lens to frame emerging CPS-related knowledge. This paper is an effort to give a contribution in this direction. In particular, starting from the acknowledgement that a relevant characteristic of reconfigurability is modularity, this research proposes a literature-based analysis of the Cyber-Physical Systems of the future smart factory

    A framework to manage reconfigurability in manufacturing

    Get PDF
    Nowadays, manufacturing firms are dealing with the unpredictability of market requirements and the frequent changes induced by technological innovation. For this reason, firms are more and more addressing the need to be responsive at an affordable cost. To do so, they are required to develop a capability called reconfigurability. This paper is a review of the existing literature because the current need makes interesting to reflect on the state of the art of reconfigurability as a concept. This reflection has led to focus on reconfigurability characteristics for both their relevance and their relationships with managerial decisions in manufacturing. To this end, a framework has been proposed. It is based on system lifecycle and production levels. These two elements have been deduced from literature and identified as relevant dimensions for decision-making

    State of the art of 18F-FDG PET/CT application in inflammation and infection: a guide for image acquisition and interpretation

    Get PDF
    Aim The diagnosis, severity and extent of a sterile inflammation or a septic infection could be challenging since there is not one single test able to achieve an accurate diagnosis. The clinical use of 18F-fluorodeoxyglucose ([F-18]FDG) positron emission tomography/computed tomography (PET/CT) imaging in the assessment of inflammation and infection is increasing worldwide. The purpose of this paper is to achieve an Italian consensus document on [F-18]FDG PET/CT or PET/MRI in inflammatory and infectious diseases, such as osteomyelitis (OM), prosthetic joint infections (PJI), infective endocarditis (IE), prosthetic valve endocarditis (PVE), cardiac implantable electronic device infections (CIEDI), systemic and cardiac sarcoidosis (SS/CS), diabetic foot (DF), fungal infections (FI), tuberculosis (TBC), fever and inflammation of unknown origin (FUO/IUO), pediatric infections (PI), inflammatory bowel diseases (IBD), spine infections (SI), vascular graft infections (VGI), large vessel vasculitis (LVV), retroperitoneal fibrosis (RF) and COVID-19 infections. Methods In September 2020, the inflammatory and infectious diseases focus group (IIFG) of the Italian Association of Nuclear Medicine (AIMN) proposed to realize a procedural paper about the clinical applications of [F-18]FDG PET/CT or PET/MRI in inflammatory and infectious diseases. The project was carried out thanks to the collaboration of 13 Italian nuclear medicine centers, with a consolidate experience in this field. With the endorsement of AIMN, IIFG contacted each center, and the pediatric diseases focus group (PDFC). IIFG provided for each team involved, a draft with essential information regarding the execution of [F-18]FDG PET/CT or PET/MRI scan (i.e., indications, patient preparation, standard or specific acquisition modalities, interpretation criteria, reporting methods, pitfalls and artifacts), by limiting the literature research to the last 20 years. Moreover, some clinical cases were required from each center, to underline the teaching points. Time for the collection of each report was from October to December 2020. Results Overall, we summarized 291 scientific papers and guidelines published between 1998 and 2021. Papers were divided in several sub-topics and summarized in the following paragraphs: clinical indications, image interpretation criteria, future perspectivess and new trends (for each single disease), while patient preparation, image acquisition, possible pitfalls and reporting modalities were described afterwards. Moreover, a specific section was dedicated to pediatric and PET/MRI indications. A collection of images was described for each indication. Conclusions Currently, [F-18]FDG PET/CT in oncology is globally accepted and standardized in main diagnostic algorithms for neoplasms. In recent years, the ever-closer collaboration among different European associations has tried to overcome the absence of a standardization also in the field of inflammation and infections. The collaboration of several nuclear medicine centers with a long experience in this field, as well as among different AIMN focus groups represents a further attempt in this direction. We hope that this document will be the basis for a "common nuclear physicians' language" throughout all the country

    The Core Concepts of Reconfigurable Manufacturing

    No full text
    corecore